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ABSTRACT

In order to account for the importance of accurate and timely

information in modern warfare, four state variables are defined

corresponding to information and forces of two opposing sides. The

dynamics of the interactions between the variables is modeled by

non-linear evolution equations.

The arbitrary non-linear attrition functions are approximated by

polynomials of second degree. Of the 32 possible coefficients, 20

are identifiable with C31, counter-C3 , intelligence, and firepower of

the opposing sides. The remainder are set to zero and the resulting

system of dynamical equations are examined for stationary points and

for stability. It is determined that several stationary points are

possible and a method is presented to determine one of them as the

solution of a system of linear equations.

The model is examined for stability near this equilibrium point.

it is shown to be environmentally unstable, and to have a bifurcation.

That is, when unstable, either side may win depending on whom gains an

initial advantage. When stable at unity equilibrium (equal forces in

the field) a force multiplication ratio is defined by the ratio of the

force replenishment rates. This ratio is easily calculated from the

C31, counter-C 3, intelligence, and firepower parameters of the model.

Examples of stable and unstable force and information evolutions

are presented.



Table of Contents

I. Introduction----------------------------------------------1I

Ii. Aggregate Conflict Modeling -------------------------------- 6

III. Evolution Equations --------------------------------------- 12

IV. A Specific Model Proposed---------------------------------- 14

V. Equilibria and Stability ------------------------ 18

VI. C 3 Effectiveness and Environmental Instability--------------- 25

VII. Discussion ----------------------------------------------- 43

Appendix A. The General Mathematical Theory ----------------- 46



LIST OF TABLES

4.1 Definition of Model V Parameters ------------------------ 16

6.1 Model V Parameters for Example Calculations -------------- 26

6.2 Initial Conditions for Case b.) with
d at 0.4 and d at 1.0 (_Stable) -------------------- 32xy yx

6.3 Initial Conditions for Case b.) with
dxy at 1.4 and dyx at 1 .0 (Unstable) ------------------ 33



LIST OF ILLUSTRATIONS

Figure 2.1 A Four Species Model of Modern
Military Conflict -------------------------------- 7

6.1 Root Locus Plots for Cv (Eigenvalues) ------------- 29

6.2 Stable and Unstable Regions of C31
Effectiveness Parameter Space --------------------- 30

6.3 Single Perturbation Stable (MX = 1.25) ------------- 34

6.4 Single Perturbation Stable Phase Plot
(Mx at 1.25) ------------------------------------- 35

6.5 Single Perturbation Stable Phase Plot
(Ix at 1.25) ------------------------------------- 37

6.6 Double Perturbation Stable Phase Plot
(I x and I at 1.25) ------------------------------ 38

6.7 Single Perturbation Unstable (M at 1.25) ---------- 40
x

6.8 Single Perturbation Unstable Phase Plot
(Mx at 1.25) ------------------------------------- 41

i, r , , . _ ,. . . . : _ m

. . .. .I l , , m IU I. . .-



A Dynamic Model for

Modern Military Conflict

Paul H. Moose

I. Introduction

In modern warfare, an operational commander is intimately concerned

with the quality, timeliness and completeness of his "picture" of the

tactical situation. To a very large extent, his fortunes and those of

his assigned forces depend on his having available, when and where he

needs it, accurate data about the status, location and activities of

both his own and the enemies' forces. Similar requirements extend well

down into subordinate echelons of his command, including individual unit

commanders and even "smart" weapons.

Today, the methods by which information is acquired are remarkably

diverse. Sophisticated radar and electronic intercept equipments and a

variety of imaging and acoustic sensors on fixed, mobile, airborne and

satellite platforms send reports to the command center. Inputs from

direct observation of the commander's own personnel along with reports

from special intelligence are communicated, by a variety of means, to

the command center too. All this creates a massive and continuing

informational input to the commander and his staff. The staff, assisted

by modern automatic data processing equipments, is regularly creating and

updating their assessment of the situation in order to give the best

operational picture they can to their commander. The commander will, to

a very great degree, make rational and reasonably predictable decisions

for the future activities of his forces based on the world view he has

developed from this sequence of images.



There are several important obsevations to make about this "image

of reality" that the commander works with. First, the images he has are

never absolutely correct, that is, they contain errors. Nor are they

perfectly sharp, that is, there are always many questions that are

unanswered, or elements of contradiction or ambiguity. Secondly, a given

image grows more and more "fuzzy" the further into the future one attempts

to extrapolate it. This is because most elements of the picture are

dynamic, that is, they change (location, behavior, etc.) with time. Some

attributes of the elements may be partially constrained. For example, a

ship cannot move faster than about 30 knots. Nevertheless, after suffi-

cient time elapses most features of the picture will have total freedom

to take on any of their possible values or conditions.

This "fuzzyness in the crystal ball" axiom has a corollary. If the

commander loses, or turns off, his sensors or sources of information, his

"current image" will grow fuzzier and fuzzier with time until it is

eventually completely blurred. Put another way, a commander only maintains

his uncertainty about what is going on below its worst possible level by

virtue of the continual application of systemic resources to guarantee an

inflow of new information. Thus, sensor devices and information sources

provide constraints on uncertainty. They do this by continually importing

information to offset uncertainty's inevitable growth.

But merely gathering new information from one's own assets to combat

the growth of uncertainty may not tell the whole story. For example,

Rona [2] has described the concept of "information war" as a dominant

factor in the conduct of modern warfare. In an information war, one

(2) Rona, T. P., "Weapon Systems and Information War", Boeing

Aerospace Co., Seattle, WA, July 1976.
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actively attempts to deny the enemy knowledge of his force positions,

numbers, intentions, etc. This is done by a variety of means. Included,

for example, are cover and deception tactics, distribution of radar chaff,

decoys, false messages, etc. One also works to keep his own communications

intact and secure, but to intercept, exploit and/or jam those of the enemy.

One may also try to physically disable enemy C3 facilities and channels.

In all of this, the purpose is to try to reduce one's own uncertainty by

assuring a steady, reliable inflow of relevant information, a term we have

already described above. But moreoever, to disrupt the opposition's flow

of information and ultimately blur or distort his image of the operational

situation. This will cause, we maintain, poor decisions on the enemy's

part thereby reducing his force effectiveness.

0I

So far we have not mentioned directly the role of the forces themselves.

Although it is undeniable that accurate, timely information and reliable

rapid communications are essential ingredients for success i: battle, they

must be coupled to effective fighting units in order to have any real utility.

Just as good management may be essential to a successful business, management

alone cannot realize any true results without suitable raw materials and an

app-opriate workforce.

In military combat this translates into trained men, adequate transport

and effective weapons. All other factors equal, we would expect the side

with the largest force to prevail, if not in each individual battle, at least

in the overall campaign or war. Note the emphasis on all cther factors being

equal. In general, we expect asymmetries, perhaps major ones, in the area of

command, and control, communications, intelligence, deception, electronic

warfare and even in tactical doctrine and perhaps strategic objectives.

3



At least since the time of Lanchester 13] , military planners,

historians and analysts have been interested in analytical models of

combat. With the advent of high speed digital computers, a number of

quite detailed combat simulations and wargames have evolved. But it

has been difficult to account for the effects of C31 on the outcomes of

conflicts in spite of a realization of its critical nature. For example,

Mr. Andrew Marshall, DoD's Director of Net Assessment, said in 1977, that,

"theater models have been assessed to have virtually no utility, parti-

cularly since they lack the ability to treat the major asymmetries that

exist on both sides in tactical doctrine and the structures of command

and control. In addition, the failure of present theater models to

account for certain factors (surprise, deception, leadership, etc.) that

historically have permitted a force that is inferior in number and equip-

ment to defeat a superior one does not inspire confidence in the use of

such models" [4] . In 1980, D.P. Gaver [5] demonstrated the dependence

of statistics of force attrition on the information available to the

forces and/or their weapons, (accuracy of missile tdrgeting data, for

(3)
Taylor, J.C., "A Tutorial on Lanchester-Type Models of

Warfare (U)", Proceedings 35th Military Operations Research Symposium,
July 1975.

(4) Theater Level Gaming and Analysis Workshop for Force Planning,
Lawrence T. Low, Vol II, 1981, SRI International, Menlo Park, CA,
Contract N00014-77-C-0129.

(5) Gaver, D.P., "Models that Reflect the Value of Information in
a Command and Control Context", Naval Postgraduate School, Monterey, CA,
NPS-55-80-027, Oct 1980.
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example). But we also note that the fortunes of the forces will, in

turn, have an effect on the ability of the C31 system to function

effectively, not only through the fraction of the forces that remain

well coordinated and informed, but also through the portion of total

systemic assets that can be devoted to C 31 and counter-C 3 tasks.

What appears as an inevitable consequence of modern military evolution

toward greater reliance on smart weaponry, extensive intelligence and

surveillance gathering sensors and high speed, high volume communications

nets is an analytical requirement to simultaneously model the time varying

behavior of the status of both the information capabilities and the force

levels of each side. These four quantities are all coupled. Together

they define the status of a conflict at any point in time.

The development and presentation of such a model, along with an illus-

tration of certain important patterns of behavior that this four-species

system can exhibit, is the objective of the remainder of our present

report.

i5



II. Aggregate Conflict Modeling

From the Introduction, it is apparent that we wish to consider

the interaction of information (lack of uncertainty) and forces (men

and materialsi on each of two sides (we shall refer to them as side X

and side Y) engaged in conflict. That is, their mutual objective will

be the attrition of each other's assets and the defense of their own.

Schematically, the interactions between the four system variables and

the independent system inputs are illustrated in Figure 2.1.

The matter of units in which the variables are measured needs

explanation. As far as the forces are concerned, we break no new ground.

According to Morse and Kimball [6]; "Each side has at any moment, a

certain number of trained men, of ships, (sic) planes, tanks, etc., which

can be thrown into battle in a fairly short time, as fast as transport

can get them to the scene of action. The total strength of the force

is determined by the effectiveness of each component part. At any stage

of war, we can say that a ship is as valuable as so many armies, that a

submarine is as valuable as so many squadrons of planes, etc. To this

crude approximation, each unit can be measured in forms of some arbitrary

unit - so many equivalent army divisions for instance." Morse and Kimball

go on to recognize that this is an oversimplification due to qualitative

and situational differences between air, sea,land, armor, etc., but that

this type of simplification is in the nature of constructing macroscopic

models of this sort (in their case, Lanchester Models). We are forced to

adopt their same point of view, as indeed are all macroscopic modelers of

complex phenomena, with regard to the forces.

(6) Morse, P. and Kimball, Methods of Operations Research, the

MIT Press, Cambridge, Mass, 1951.
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No less so is our need for aggregation with regard to modeling the

total state of information at any moment in time as it exists in the

"images of reality" perceived by all the commanders that are taking

decisions for allocation of their forces. The value of "knowing" an

enemy's strength and locatin must be placed on a common scale with

"knowing (correctly)" his intentions as well as being deceived, e.g.

"knowing incorrectly" his intentions. The matter of measuring all of

the elements of information about a conflict on a common scale, or in

common units, if you will, strikes at one of the central problems in

C31 modeling and evaluation, namely, determining the relative utility

of various types of information. Although we recognize the extreme

simplifying nature of our approach, we must steadfastly maintain that

it is possible to conceive of an overall state of (accurate) knowledge

that each side has about the war at each given instant of time and that

the commander's decisions, and thusly the forces' performance of their

assigned missions, will on the average improve as this overall knowledge

is more complete, but will lose in effectiveness as it is less complete.

Since we clearly conceive of information as a lack of uncertainty

about the environment we may as well elect to measure it, on an macros-

copic level, in bits. It remains to determine the relative number of

bits contributed by various elements of data but this in principle seems

no more an improbable feat than determining the relative worth of a

submarine on the same scale with a squadron of helicopters.

Let us look again now at Figure 2.1. The four aggregate or macros-

copic variables that determine the state of the conflict at each instant

of time are Mx , Ix, My and Iy the forces and information, measured on the

aforementioned scales of units, of sides X and Y respectively. Each of

these is not to be just a constant number, but changes during the course

8



of the conflict, that is, each is a function of time M xt), I x(t), M y(t) and

I y(t). The units of the time scale need not be chosen to be seconds; it

may be more appropriate to measure time in minutes, hours, days or even

weeks. Since time is to be a continuous independent variable, its units

are really immaterial, however, we shall elect for the balance of this

paper to think of it in hours.

It is not really the absolute values of the state variables that

interest us in modeling as much as their rates of change. This tells us

whether side X or side Y is gaining or losing in knowledge and forces

at any given moment. It is clear from our diagram in Figure 2.1 that the

effect of side X being continually resupplied is to cause M to

increase (have a positive first derivative). However, we also expect

some failures. Equipment will break down, some men will grow ill or be

incipacitated in training, etc., causing Mx  to decrease (have a negative

first derivative). Side X may also elect to divert some men and supplies

to strictly intelligence gathering work or men and supplies to C3 support

functions, similarly depleting Mx . These gains and loses are internal

to side X and independent of the actions taken by side Y against X.

However, we also expect side X to lose men and materials due to the

war efforts of side Y. This is combat related attritions and we presume

it will depend both on the size of side Y's force, My and on his state

of knowledge about the conflict which we are modeling with the macroscopic

variable Iy. This is indicated by the arrows from My and Iy to Mx

in Figure 2.1.

In addition, we want to account for side Y's counter-C efforts

against X. These are of two types. Physical destruction of X s C31

facilities and assets is one. These activities are undertaken by either

9
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specifically designated or regular components of Y forces. Whichever,

we presume that the amount of effort Y can devote to these physical

counter-C 3 activities will be a fraction (perhaps small), of his total

force. The second type of counter-C3 depends directly on Y's informa-

tioni about X's  intelligence and C3 system. This type of counter-C3

includes deceptions, misinformation, jamming of communications and radars,

decoys, etc. These two types of counter-C 3 are indicated in Figure 2.1 by

the arrows from My and Iy to I x . That is, we expect counter-C
3

activities will tend to reduce X's  knowledge about and ability to

control the overall environment.

However, totally independent of yVS efforts, X's  information about

the environment grows old, and since the environment is dynamic (things

are always changing), X's uncertainty tends to grow with time (informa-

tion decays) as we described previously in the Introduction. These

natural losses, as well as counter-C 3 information losses are offset by

"informational replenishment". This is the purpose of intelligence,

surveillance, battlefield reports, etc., as well as orders from higher

command levels that re-focus the commander's mission and responsibility.

These "natural losses" and external "informational replenishments" are

indicated in the diagram of Figure 2.1 as external inputs to and outputs

from Ix

We have described the phenomena that are to be accounted for in the

model from X's viewpoint. If we desire to model two modernly equipped

and organized opponents, then all the same may be said for side Y and

X s efforts against Y. This "bilateral" structure is indicated in

Figure 2.1.

10
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To summarize this section:

A. System State Variables

1.) IX  Side X's Information Level

2.) Mx  : Side X Force Level

3.) 1 : Side Y's Information Level

4.) M Side Y Force LevelY

B. Independent Variable

1.) Time : hours (arbitrary, can be seconds, minutes, days,

weeks, etc.)

C. Replenishment

1.) Intelligence reports, battlefield reports, surveillance

reports, orders, etc.

2.) Resupply of men, weapons, transport, etc.

D. Natural Losses

1.) Increased uncertainty as information becomes dated.

2.) Equipment breakdown, troop illness and training casualties, etc.

E. Combat Losses of Information

1.) Losses due to physical attacks on C31 assets.

2.) Losses due to information war: jamming, deception, etc.

F. Combat Losses of Forces

1.) Attrition due to firepower of opposition. Effectiveness

dependent on opposition's C 3I as well as his force level.

11r



III. Evolution Equations

Evolution problems are common to all the sciences; life, physical

and social/economic. Evolution theory in modern science is a mathematical

body of knowledge that can be used to model complicated real life problems.

Non-linear mechanics, multiple compound chemical reactions, urban develop-

ment, population biology, ecosystems, economic growth, industrial develop-

ment and growth of pollutants, cell biology and genetic evolution are

some of the many important complex system problems to which evolution

theory has been applied.

The mathematical basis is to characterize the particular problem

with a system of n, non-linear first order differential equations. The

most general form of such a structure is,

SCt) = F (S(t), p) + Q(t) (3-1)

where S(t) is an nxl column vector of the system state variables,

S(t) are the first derivatives of the state variables and F(S(t), j.)

is an nxl column vector of arbitrary growth (or attrition) functions.

Each element of F depends in some known (or modeled) way on all the

state variables and on a set of parameters p. The dependence on the

other state variables may be, and usually is, non-linear. The nxl

column vector Q(t) is the "drive" or "input" to the system, and is

assumed independent of the state variables S. If the parameters

are not functions of time, the system is called "autonomous". If they

are functions of time, it is called "non-autonomous". [7]

(7) looss, G. and Joseph, D.O., Elementary Stability and Bifurcation

Theory, Springer-Verlag, 1980.

12



In our model for modern military conflicts, S is the 4xl column

Tvector S = [I X Mx Iy My] of system state variables. Q is the 4xl

column vector of replenishment rates, Q = Qx R x Q y Ry]. F1, F2, F3,

F4  are the attrition functions for side X s information, side X'

forces, side Y s information and side Y s forces respectively. These

attrition functions are to account for natural losses and for losses (or

growth) induced by the other three system variables.

We shall presume that our system can be modeled by attrition

functions that are at most quadratic. That is, each one shall be of the

form

n n
Fi (S , ) = "Si ij S- I  aij Sj (3-2)

to include product terms involving the ith system variable with all the

n system variables plus linear terms in all the n system variables.

Loss functions of the form of (3-2), not including the linear terms,

are known as Lotka-Volterra loss functions or sometimes just Volterra

functions and are commonly encountered in ecosystem models [8]. The

parameter set 4 consists of the set of 2n2 coefficients {oij and

Si} for i=1,2,..n and j=l,2,..n. Thus our four-species model is

characterized by at most 32 parameters.

(8) May, R.M., Stability and Complexity in Model Ecosystems,

Princeton Univ Press, 1974, 2nd Edition.

13



IV. A Specific Model Proposed

We wish now to construct a model within the generalized form of the

Lotka-Volterra equations, that can account for the important interactions

of modern military conflicts described in sections I and II. The specific

system of equations we shall investigate are the following:

Mx= ~-[C I + Y M][M I +d c Mb I]+
x xyy xyM y x x xxx xy x y4-

Mx Z - M[ I + y M y] " [I + I + b + Rx XYy XYy x xxx XYy XYy X (4-1)

ly y - y[xyIx + YyxMx y Iy - ayyMy]+ y

my y - M y 6 yxx yxMx - yMy + yyIy + yxIyx + Mx +

These equations are seen to be of the generalized Lotka-Volterra form;

however, only 20 of the 32 parameters that might possibly be included have

been retained. The particular interactions that we have modeled are

designated as "Conflict Model V".

A word on the notation. Greek letters designate coefficients of

quadratic terms in the model; english letters designate coeffic 4 ents of

linear terms. Subscripts x and y are used to identify the interaction

variables, the first indicating the side suffering the attrition and the

second indicating the side that is the source of the attrition. For

example, 3xy indicates the area fire (quadratic) attrition coefficient

of side Y S forces against side X's forces. A complete list of all 20

parameters plus the four source terms is presented in Table 4.1. The

model has been constructed with algebraic signs so that all the parameters

are presumed to be non-negative.

Given an initial set of force values and a set of parameters, the

solution for this system of equation will define the time history of

knowledge and forces as the conflict between the two sides evolves.

14



Since there is nothing about the nature of the equations to prevent

negative values for the state variables, we must stop our solution when

one or more of the variables reaches zero. We can either declare the

conflict over, or continue the evolution with a new system.

Determining actual values for the parameters listed in Table 4.1

may be a difficult task for actual or potential conflicts. More will be

Source Terms

Rx = x s  information input rate
I

x - X men, weapons and material resupply rate

y . yS informational input rate

Ry - Y men, weapons and material resupply rate

Interaction Coefficients for Information Evolution

a xy(ax ) - Deception, jamming, decoy, etc; counter-C 3 effectiveness

of Y's (x's) information assets against X'S(Y 's) information

system.

Yxy(Yyx ) - Sabotage, command post attacks, communications attacks, etc;

counter-C 3 effectiveness of Y's(X'S) force assets against

xS(Ys) informational assets.

a (a - X'S(Y'S) natural rate of information loss per bit

xx(Ry) - X5s(Y's) rate of information gain per unit of forces

devoted to information producing activities.

Interaction Coefficients for Force Evolution

6 xy(6) - Increase in loss rate of X'S(Y 's ) force due to Y's(X'S)

knowledge; quadratic C3 effectiveness coefficient.

Bxy( yX) - xS(Y's) loss rate of forces due to Y's(X'S) force size

(Lanchester "area" fire coefficient).

15



bx (by) - X's(Y 's) normal loss rate of men and equipment due to

illness, accident, equipment failures, etc.

a (a y) - XI(Y) loss rate of men and materials due to diversion

to intelligence and C3 producing activities for own side

(see E (Jx yy ) .t

d xy(d yx ) - Increase in loss rate of X S(y's) force due to YS(xS)

knowledge; linear C3 effectiveness coefficient.

bxy(b yx) - X'S(Y 's ) loss rate of forces due to Y's(X'S) force size

(Lanchester "aimed" fire coefficient).

Table 4.1

Definition of Model V Parameters.

said about this problem in the final section. But the real value of a

mathematical model lies in its ability to analytically predict the types

of behavior that can be exhibited, and in particular to determine if this

behavior is particularly sensitive to slight variations in one or more of

the parameters.

It is now well known [May, op cit], the more species interacting in

a system of evolution equations, the more prone the system is to unstable

behavior. This relationship between complexity and stability is an important

one for us. In an earlier paper [9] modeling the dynamics of information war

with a two-species model (equivalent to Ix and Iy of the current model), it

was shown that the system was ultra-stable (also called environmentally

(9) Moose, Paul H., "A Dynamic Model for C3 Information Incorporating

the effects of Counter C3", NPS Report 62-81025PR, Dec 1980.
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stable). That is, the system always returned to its equilibrium or

steady state conditions, when perturbed from that conditions, regardless

of the values of the interaction coefficients. We shall see that such

is not the case for the four-species (Ix, Mx , I,, M y) model we propose

here. Furthermore, the information war two-species model had but two

equilibrium points in its two-dimensional state space, and we were able

to show that only one of the two could lie inside the physically

accessible region of the state-space. In a four-species model of the

Lotka-Volterra type, there is a potential for 16 equilibrium points

in the four-dimensional state space. (Because not all interactions are

retained, Conflict V has 12 equilibrium points). The location of these

equilibrium points, their sensitivity to parameter variations, and the

dynamic behavior of the system in the neighborhood of the equilibrium

points is the subject of the analysis in the next section.
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V. Equilibria and Stability

An important mathematical feature of the evolution equations are

their "stationary" or equilibrium" points. These points are sets of

values for the state variables for which the net rates of change are

simultaneously zero. If the system ever reaches one of these points

it will no longer evolve without some external intervention.

If the system were linear, there would only be one equilibrium

point. In the theory of linear systems, the values of the state

variables at equilibrium are associated with the "steady state" res-

ponse of the system to the constant forcing functions, Q. However,

since our model is non-linear, it may have multiple equilibria. An

nth order Lotka-Volterra model, which is quadratic, has 2n equilibrium

vectors if all interaction terms are present. Thus, a four-species

model has at most 16 distinct equilibrium vectors. In Model V, there

are at most 12 because only 20 of the 32 possible interaction terms

seemed to have physical interpretation for coupling the informational

and force variables.

Determining the equilibrium points is in general a very difficult

problem. For a given set of coefficients, some of the equilibrium

vectors might have negative and or imaginary elements. These points

would be inaccessible to a real system. Therefore, the only equilibria

of interest to us are those that have all real, positive elements.

There is a technique by which we may determine one equilibrium as

the solution of a system of linear equations. The method is derived

for the general nth order Lotka-Volterra model in Appendix A. We shall

derive it here explicitly for the four-species system, Model V that

has been proposed as a model of military conflict in the previous

section.
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We begin by assuming there is an equilibrium point which we designate

Ixe, Mxe, ye,Mye}. If these values are substituted into Eqn (4-1), the

right sides are zero and hence all the rates of change are simultaneously

zero and the system is at a stationary or equilibrium point. In the same

equations, let us redefine the resupply rates and linear coefficients

as follows:

Qx = Qxlye % ax = axlxe ' xx = Cxxlxe
Rx RxMxe ' bx = bxxe ' d A dxxMxe dxy dxyMxe b yx = bxyMe

Qy = Qyly e  , ay = a y I cyy = Cyyly e  5-1

Ry = RyMye ' by = byMye d yy = dyyMye d yx dyxMye byx = byxMye

That is, we replace all the coefficients with tildes over them by

untilded coefficients multiplied times the corresponding (albeit unknown)

equilibrium value for the state variable in whose evolution equation the

coefficient appears. The new system of equations are given by:

ix = Ix[xyy + xy y - Ixe[axlx-cxxMx] + IxeQx (5-2)

Mx Mx[xy Iy + xy M " Mxe bxMx+dxxlx+bxyMy ] + M xeRx (5-3)

iy = -I y[yxlx+ YyxMx] - lye ayly-CyyMy] + lyeQy (5-4)

M = -M [5 1 + y M ] - M [byMy+dyIy+dyI+b M ] + M R (5-5)
y y yx x yx x ye yy yy yyxx yxx ye y

If we now equate the right hand sides to zero simultaneously when

evaluated at {Ixe, Mxe, lye$ Myel' we obtain the linear system of

equations,

xyye xyMye xxe " CxxMxe x

(3 +d )I + b~+ )M d I + bM -R = 0xy xy ye + ( xy xy ye + xx xe xMxe -x
(5-6)*I +y +aI - -Q y

yxIxe YyxMxe aylye - cyyMye y=

(yx +dyx)lye + (Q yx)Mxe + dyylye + byMye - Ry = 0
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which we may collect into matrix form as,

x xx xy Yxy 1 xei

dxx bx  (6 xy+d x) (yx+b xy) M - R = 0 (5-7)yx y
yL a -cQ

yx y yy j ye jy
(YX +d yx) +b ) by Mye Ry

The system (5-7) may be solved for the equilibrium values given all

the untilded coefficients, then the tilded coefficients of (5-1) can be

computed and reinserted into the original system of equations since the

equilibrium values are now known. This is a bootstrap method to find one

equilibrium point. The location of the others remains unknown.

Probably the most important application of (5-7) is the means it

provides us to establish an equilibrium point at an arbitrary location

in the state space, by adjusting 4 of the parameters. In particular,

we can easily calculate the resupply rates that are needed to establish

a stationary point for the conflict in a region of the state space that

is physically accessible. From an analytical point of view, establishing

equilibrium at {l, 1, 1, 1} is particularly convenient. If we do this,

then we have the equations

ax Cxx + axy + "Yxy Qx

dxx + bx + dxy + 5xy + bxy +  Rxy X

a x y x % + Y (5-8)
ay Cyy ayx Yx y

d +yb + d +X5 +Xb +$Y =Rdyy y+ dyx +yx yx+ yx = y

that must be satisfied. These relationships only apply at unity

equilibrium. Equation (5-7) must be used for the general case but it
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is already solved for the resupply vector, given the remaining parameters

and any desired equilibrium point.

Once an equilibrium point is found, or the resupply rates are found

to establish a specified point, we know that the rates of changes are

simultaneously zero at that point and if the conflict somehow reaches it,

the system state variables will, in theory, change no more. However, we

are interested in discovering whether the point is stable or not. Is it

like considering a marble either In the bottom of a bowl, or on top of

an upside-down bowl. Or we may think of a pencil hanging from one end,

or standing straight up on an end. In one case, a slight tap and the

pencil falls over, in the other it returns to its original vertical

position.

Similarly, the marble given a slight displacement rolls off the bowl

in one case, but returns to the bottom, its equilibrium position, in the

other. One type of equilibrium point is said to have "neighborhood

instability", the other has "neighborhood stability". A system has "global

stability" if it returns to equilibrium from anywhere in the space. Since

we have a non-linear system, and there are multiple equilibria, we might

expect, if we displace from the local neighborhood at a given point too

far, that the system could return to a different point, much like valleys

between different ranges of hills.

Thus our first task is to examine the "neighborhood stability" of the

one equilibrium point we have found (or fixed). The standard technique

for this is to introduce a small perturbation in the equilibrium state

vector. The results are derived for the nth order generalized Lotka-

Volterra model in Appendix A. We repeat the derivation here for the

four-species system Model V proposed in the previous section. Our mathe-

matical model of system evolution is of the general form
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S = F(S, p) + Q (5-9)

T,
where specifically, S = [Ix Mx Iy My ] , and the quadratic vector functions

are given in equations (4-1). The resupply vector,

= [ Q Ry Q y]T, is presumed to be constant. We now define the

perturbation vector s = x mx iy m y]
T  as the distance from the

equilibrium point, Se = [Ixe Mxe Iye Mye]T to the point S. Note

that S = s since Se is a constant. Now (5-9) becomes

S e= (e + ~S1 P) + Q (5-l0)

If we expand the non-linear functions about Se  in a Taylor series and

assume terms of quadratic degree and greater in s are negligible for

small perturbations, then

s = F (s e ) + C s + (5-11)

where C is a four by four matrix with elements

c a F-
ij as S.

S = Se (5-12)

Now since Se is an equilibrium point, then F (Se ) + Q = 0 by

definition. Therefore

s = C • s (5-13)

are the linear homogenous state equations that govern the dynamical

behavior of the perturbation variables s near the equilibrium point

Se .  The matrix C couples those variables together and, as is

explained briefly in Appendix A, it is well known from the theory of

linear dynamical systems that its eigenvalues determine the stability

of the equilibrium point. We shall call the C that goes with our

four species model of modern military conflict the "Conflict Matrix".
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Since the specific terms retained in the model in this paper identify

it as Model V, we shall designate the corresponding matrix as "Conflict

Matrix V", or Cv .

The elements of C ., found according to Eqn (5-12) from Eqn (4-1)

yield,

'(axlxe-a xyIye xyMye cxxIxe -axyIxe YxyIxe1

-dxx Mxe (-bxMxe 6xyIye-axyMe) (-6xy dxy)Mxe "xy bxy)Mxe 1 (5-14)

Cv = Iyxlye -Yy+1ye (-ayIye- yxxe-Y yxMxe) cyylye

(-6 -d )M ( -b )M4 -d M (-bM -6 1 M ),yx yx ye yx yx ye yy ye y ye yx xe yx xe)j

Note that the elements in the conflict matrix, and hence its eigen-

values, depend on the equilibrium point as well as the system parameters.

For analytical purposes, fixing the equilibrium point at unity,

= [1 1 ] ], establishes the somewhat simpler conflict matrix

(ax+ xy+Yxy) Cxx -axy "Yxy

-dxx -(bx+6 xy+ xy) -(d xy+6 xy) -(b xy+ xy)
c : (5-1 5)

-v " yx "Yyx ( ay+a yx +Yyx )  Cyy

-(dyx+6yx) -(byx + yx dyy -(b +6 +
L)xyxy y yx+ yxj

The solution of the state Eqn (5-13) is of the form

4 Pjt
si(t) = r ij , i=1,2,3,4 , t > 0 (5-16)j=1

The {P.}, eigenvalues of C, are the roots of the characteristic eqn,

D(p) - Det[pI - C]

For our four-species Model V, D(p) is a fourth order polynomial with

coefficients that depend, in a very complicated way, on the elements of Cv
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The {r i} are constants that depend on the initial values of the

perturbation vector, s(o).

The important thing, however, are the roots {pj}, which will either

cause the perturbation to die out, if all the Re {pj} < 0, in which case

we have "neighborhood stability",or cause the perturbation to grow if

Re {p.} > 0 for one or more roots. In this latter case we say the system

is "unstable at S = Sel. (It may be stable at another equilibrium point).

In the four species model there are four roots or eigenvalues. They

may all be real, there may be two real and one complex conjugate pair, or

there may be two complex conjugate pairs. The system is stable for a

particular combination of coefficients if all the roots lie in the Right

Half of the complex plane (RHP). Of course, if any one (or more) of the

model coefficients is varied, the roots will move about in the complex

plane. If a smooth variation of the coefficients causes one or more roots

to move into the Left Half Plane (LHP), the system is said to be "environ-

mentally unstable".

It is very important to determine if our model exhibits, or is capable

of exhibiting this type of instability. What it suggests is the possibility

of a stalemated (stable) battle situation changing to a battle with a

decisive outcome (one side being severely depleted or wiped out) as the

result of only a small change in one of the model coefficients, e.g. C
3

effectiveness (dxy or d yx). In fact it is possible, that in an effort to

win the battle (or war), the C3 or firepower effectiveness might be increased,

the equilibrium point becomes unstable, but due to chance the opposition may

gain a temporary slight advantage and he is in fact able to win. We shall

see that this phenomenon, known as a "bifurcation", can indeed occur in our

system as illustrated by the example described in the next section.
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VI. C3 Effectiveness and Environmental Instability

As an illustration of dynamics of Conflict Model V, we investigate

the effects of variation in the linear, C3-effectiveness coefficients dxy

(effectiveness of Y against X) and dyX  (effectiveness of X against Y),

while holding all the other coefficients constant. Table 6.1 lists the

values we have selected, somewhat arbitrarily, for all the other parameters.

We might note the following from Table 6.1:

1.) Only Lanchester "area fire" terms are retained. "Aimed fire" is

set to zero.

2.) Quadratic C3-effectiveness terms are set to zero.

3.) The example is symmetrical except for the variable terms, dxy

and d yx9 which may or may not be equal, and for the counter-C
3

terms. Note that X employs pure physical destruction of ys C
3

assets, with no deception (yx t 0, ayx = 0.0) whereas Y employs

pure deception and misinformation against X, with no physical

destruction (axy # 0, Yxy 0.0). This example is asymmetrical

3
in counter-C

Let us now calculate the resupply rates in order to establish an

equilibrium point at unity; fIxe = 1.0, Mxe 2 1.0, 1ye = 1.0, Mye = 1.01.

According to Eqns (5-8),

= 1.5

1 =.5 +d
R xy (6-1)

Q = 1.5
y

Ry 1 1.5 + dyX

gives the rates of resupply necessary to maintain steady state force and

information levels of 1.0 for both sides. Note that the force resupply

rates depend on the C3 effectiveness coefficients directly. For example,

if side Y can increase the effectiveness of his forces against X thru
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Table 6.1

Model V Parameters for Example Calculations

(Variable C3 Effectiveness)

Natural Loss Rate Coefficients

ax = .5 ay = .5

bx = .5 by =.5

Diversion of Resources to C
3

Cxx =0. dxx = 0.0 Cy 0.0 = 0.0

Lanchester Fire Effectiveness Coefficients

bxy = 0.0 byx = 0.0 $xy = 1.0 ayx = 1.0

C3 Effectiveness Coefficients

d xy= variable d = variable 5 xy= 0.0 5 0.0
parameter y parameter

Counter C3 Coefficients

Physical Destruction Deception and Misinformation

Yxy = 0.0 Y 1yx = .= Oxy 1.0 yx = 0.0
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improved C3, that is Y is able to increase d, , then X must resupply his

forces at a greater rate, Rx increases, in order to maintain a constant

level of men and material in the field. This seems reasonable. Note that

each side is supplying information at a rate sufficient to make up for the

natural decay rate of information (.5), plus the losses of information due

to the opposition's counter-C3 activities.

The complete non-linear dynamical equations for this example are, from

Eqns (4-1)

I x = 1.5 - Ix(Iy + 0.5)

MX = 1.5 + dxy - Mx(My +0.5) - dxyly (6-2)

ly = 1.5 - I y(Mx + 0.5)

My = 1.5 + dyx - My(M x + 0.5) - dyxlx

In this particular example, because of the large number of zero

parameters in Table 6.1, there are only four equilibrium points, one of

which is unity. (That unity is an equilibrium point of (6-2) is easily

checked by substituting one simultaneously for Ix, MX , Iy, and My and

noting that all four equations are zero.)

It is possible to study numerically the behavior of this system of

equations quite simply by using discreet time methods and a computer.

However, we can focus this study more effectively by analyzing the

stability of the system near equilibrium as a function of d and dyx -

For this we need the conflict matrix and its eigenvalues. Substituting

our parameters from Table 6.1 into Eqn (5-15), the conflict matrix for

unity equilibrium Is:
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-1.5 0 -1.0 0

0 -1 .5 -d -1 .0
xy

Cv 0 -1.0 -1.5 0 (6-3)
-dy x  -1.0 0 -1.5

We have investigated the elgenvalues of this matrix for the following

two cases:

a.) dxy held fixed at 1.0 and dyx varied from 0.0 to 2.0

b.) d held constant at 1.0 and d varied from 0.0 to 2.0.yx xy

The IMSL routine EIGRF was employed to calculate the elgenvalues

numerically [10].

The results of these calculations can be illustrated graphically by

plotting the locus of the eigenvalues of Cv  in the complex plane for

the two cases described above. Figure 6.1 a.) shows the loci of the roots

for case a.) and Fig. 6.1 b.) shows the loci for case b.). Note in both

cases there are two real roots and one complex conjugate pair. The complex

pair moves along a constant abscissa of -1.5 as C3 effectiveness is varied.

These roots lead to damped oscillatory terms in the system response and

are stable.

In each case, both of the real roots begin in the left half plane, but

one moves left and the other moves right as C3 effectiveness is increased.

In both cases the one moving right winds up in the RHP to become an unstable,

or exponentially growing term in the response.

In case a.), the root crosses the imaginary axis for dyx = dyx = 0.56

and in case b.) for dxy = dxy = 0.81 Thus in case a.), for dyx > .56

(10)
"Eigenvalues and (optionally) Eigenvectors of a Real General

Matrix in Full Storage Mode", Copyright by IMSL Inc., 1978.
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a.) p-plane

dxy 1.00

d yx= {00- 2.00} .

d :0.56yx%
dt .5-

-3.5 f- 3 .0  2.5 J J .2 Ref

'a -. 5.

b.) p-plane (k.)

d yx  1.0

dxy {0.00-) 2.00} ."

dxy 0.81 r"u
S

-2.5 .-. 2Re )

-1.0-

Note:

Y using deception/EW
X using force for C-C3

Figure 6.1. Root Locus Plots for Cv (Eigenvalues).
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the system is unstable. In case b.), for d > .81 the system isfly

unstable. The cases are not symmetrical because of the asymmetrical

counter-C 3 policies of the two sides.

It is quite straightforward to determine the curve in the dt xy yx y

parameter space that bisects that space into stable and unstable region,

by examining the characteristic polynomial for the C given in Eqn (6-3).

The result is shown in Figure 6-2. (The bisecting curve happens to

be a straight line.) The two critical values from Figure 6.1 are marked

Is
byX

\ \\ "
\

\6 \ Unstable ,

"/(a) d + d , 25 .2

/Stable / ___7_ 1,Ub -s) , \\ , "

dY
1 2 3 4 yx

Figure 6.2

Stable and Unstable Regions
of C3 Effectiveness Parameter

Space
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Returning to Figure 6.1 a.1 and b.1, we note sets of eigenvalues

marked "u" for unstable and "s" for stable. These points are also

indicated in the parameter diagram of Figure 6.2. These four points in

Figure 6.2 have been investigated numerically for small perturbations

from system equilibrium using the full system of nonlinear equations (6-2).

The Interactive Ordinary Differential Equations (lODE) package [11] and

the NPS IBM 3033 computer were utilized in these studies. We present

here some of our results for Case b.) for both the stable and unstable

points marked in Figure 6.2 as "(b-sj" and "(b-u)". The results for Case

a.) are similar.

A number of different initial conditions were investigated and these

are listed in Table 6.2 and Table 6.3. In the stable case, Table 6.2, the

system always returns to its equilibrium value, {l.O, 1.0, 1.0, l.0},

although the time constdnts to damp out the perturbation vary, depending

on the direction of the perturbation, from as small as one time unit to

as great as 17 time units.

Figure 6.3 shows the time history of all four variables and Figure

6.4 shows the force level phase plot, My vs Mx , for Trial #2, a stable

case with side X given on a 25% initial force advantage. This advantage

is wiped out after approximately seven time units and the forces become

balanced at equilibrium. Note Side Y' s initial loss in force is counter-

balanced by his superior rate of replenishment. (Ry = 2.5, RX, 1.9).!y

However, side X s superior C3 effectiveness (1.0 vs 0.4) enables him to

hold Y at a stalemate in steady state with 75' the rate of force replen-
's c3

ishment. It seems natural to describe side X superior c effectiveness

(ll)Hillary, R.R., "Interactive Ordinary Differential
Equations Package", W.R. Church Computer Center, User's Guide to
WM/CMS at NPS, April 1981.

31



Table 6.2

Initial Conditions for Case b.) with
d at 0.4 and d at 1.0 (Stable)xy yx

Time for

I M I M 90% Damp OutTrial 41 Time Increment Ix x 0 mp ut
______ ___ __y___y__(time units)

1 0 to 50 .05 1.25 1.00 1.00 1.00 7

2 0 to 50 .05 1.00 1.25 1.00 1.00 12

3 0 to 50 .05 1.00 1.00 1.25 1.00 9

4 0 to 50 .05 1.00 1.00 1.00 1.25 10

5 0 to 50 .05 1.25 1.25 1.00 1.00 17

6 0 to 50 .05 1.25 1.00 1.25 1.00 1

7 0 to 50 .05 1.25 1.00 1.00 1.25 1.5

8 0 to 50 .05 1.00 1.25 1.00 1.25 1.5

9 0 to 50 .05 1.00 1.00 1.25 1.25 15.5

10 0 to 50 .05 1.00 1.25 1.25 1.00 4.0

11 0 to 50 .05 1.25 1.25 1.25 1.00 12.0

12 0 to 50 .05 1.25 1.25 1.00 1.25 11.0

13 0 to 50 .05 1.25 1.00 1.25 1.25 12.0

14 0 to 50 .05 1.00 1.25 1.25 1.25 4.0
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Table 6.3

Initial Conditions for Case b.) with
d at 1.4 and d at 1.0 (Unstable)xy yx

I M I M Increasing

Trial #1 Time increment Ix X Force Term

1 0 to 50 .05 1.25 1.00 1.00 1.00 M

2 0 to 50 .05 1.00 1.25 1.00 1.00 M

3 0 to 50 .05 1.00 1.00 1.001 1.00 M

4 0 to 50 .05 1.00 1.00 1.00 1.001 MY

5 0 to 50 .05 1.25 1.25 1.00 1.00 Mx

6 0 to 50 .05 1.00" 1.00 1.001 1.00 My

7 0 to 50 .05 1.001 .00 1.00 1.001 MY

8 0 to 50 .05 1.00 1.00 1.001 1.001 My

9 0 to 50 .05 1.00 1.001 1.00 1.001

10 0 to 50 .05 1.00 1.01 1.01 1.00 MY

11 0 to 50 .05 1.25 1.25 1.25 1.00 M

12 0 to 50 .05 1.25 1.25 ,.00 1.25 M

13 0 to 50 .05 1.001 1.000 1.001 1.001 M

Y
14 0 to 50 .05 1.00 1.001 1.001 1.001 y O
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as giving him a "force multiplication factor" of 4/3. In general, we

shall define

R x~r (6-4)
YX- R( )

as X force multiplication factor versus Y where ; is the surface in

the parameter space a that produces a stable equilibrium point at unity.

Figure 6.5 corresponds to Trial #2 in Table 6.2. Here the phase plot

illustrates how a temporary increase in knowledge for side X gives X a

temporary gain in forces of about 4% and Y a temporary decrease in force

level of about 7%. However, due to the system parameters, X s advantage

is in fact only temporary and the natural dynamic relationships between

the variables of the system drive it back to equilibrium.

Figure 6.6 corresponds to Trial #6 of Table 6.2. Here both X and Y

have initial information levels greater than their equilibrium values by

25%. The phase plot shows how initially both forces levels decrease,

then Y appears to be gaining an advantage over X (Y is using deception),

but slowly closes the gap and the force levels return to equilibrium

(M =M = 1.0).xe = Mye

It must be emphasized that the dynamics shown are those that occur

if neither X nor Y change any of their policies, doctrines or efforts

(parameters are held constant). One might, if he sees his force

dimishing, attempt to change his fortunes by doctrinal or policy or

motivational improvement.

For example, Y, seeing that he is losing, as in the initial phases

of Trial #2, Figure 6.5, might be able to increase his C3 effectiveness

from dxy = 0.4 to dxy = 1.4. It would now seem he would be at an
xy xy3'

advantage since dyx = 1.0 is X C3 effectiveness. However, Y
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parameter variation has altered the system to an unstable mode and

one side or the other will tend to win. Unfortunately for Y, if X

is initially at a force advantage, X will tend to win, as is shown

in Figures 6.7 and 6.8. These figures corresponds to Trial #2 of

Table 6.3, the table of numerical trials for the unstable casa "(b-u)"

in Figures 6.1 and 6.2. The other trials of Table 6.3 do show that

if Y can gain an advantage along with his doctrinal or procedural

improvement he can in fact win!

The behavior exhibited by this system is indicative of "environmentally

unstable" systems, systems where relatively small parameter changes cause

dramatic changes in the dynamic behavior. Furthermore, the fact that when

unstable, either X or Y may win, depending upon who achieves the first

slight advantage, which may of course be by chance, even though Y has the

most effective force (dxy > d yx), is illustrative of what is called a

bifurcation. If only Y can win in the unstable case, regardless of which

side gains the initial advantage, there is no bifurcation. It is obviously

important to know whether an unstable equilibrium point exhibits this

property.

Finally, Figure 6.7 demonstrates another very interesting phenomenon.

The unstable system is only unstable at the unity equilibrium point. In

fact, there is another equilibrium point at

{Mxe, = 3.206, 1xy= 1.647, Mye ,  .228, 1ye' = .405}

which is stable and the system comes to steady state at this point.

Although X has a distinct force and information advantage over Y, Y is

resupplying both men and materials and intelligence fast enough that X

is unable to completely wipe him out.
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In the example described in this section, there are as we have

previously pointed out, four equilibrium points. We have found two,

one by design at unity and the other by chance through numerical trials.

One of these two is unstable but the second is stable and the system

will gravitate to the stable point. It is important to note that both

of these points are in the physically realizable region of the four-

dimensional space of our four species. All species must be real, non-

negative numbers to be physically realized. The locations of the other

two equilibria for this example are still unknown.
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VII. Discussion

The problem of accounting for the importance of C3 and intelligence

information on the outcome of military conflicts - individual battles or

entire campaigns - has been attacked in this paper by mathematical modeling

with evolution equations. The four species model we have proposed here

has the following major benefits:

1. It predicts both dynamic and average or steady state force levels.

2. It is non-linear, which appears imperative in order to account

for the relationships between forces and information.

3. Because it is non-linear, there are multiple possible steady

state solutions, some of which may be stable ajd some of which

may be unstable.

4. The parameters of the model can be directly associated with C31

features such as C3 effectiveness, counter-C 3 (including deception,

jamming, spoofing, etc.), intelligence information, and information

"ageing" or "time late"

5. Force model includes ordinary aimed fire and area fire terms in

addition to the C31 related terms.

6. A natural expression occurs for the force multiplier of C31 in

terms of the ratio of rates of resupply required to maintain

equal forces in the field.

The Volterra structure for evolution equations, which contains

constant as well as linear and quadratic terms, was selected primarily

because of its mathematical tractability (some major mathematical

problems remain even with these equations). However, one can think of

this model as containing the first two sets of terms in a power series

expansion of the true attrition functions, whatever they may be. This
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type of argument has been made in the ecosystem modeling literature

[May, op. sit.). Whether it is valid or not for conflict modeling

needs more discussion.

What can the model tell us? Assuming we can get the parameters

somewhat nearly right, by analysis of data or through simulation, it can

1) tell us the possible steady state force levels and, 2) define the

regions of the parameter space where they are stable and the regions

where they are unstable. If a point is stable we can, 3) determine the

characteristic time constants and oscillatory frequencies of the system

when operating in the neighborhood of the stable point. If a point is

unstable we can determine 4) what type of perturbations will cause one

side or another to win (or in a stochastic model, the probability one

side or the other will win) as well as the characteristic time constants

for the system to diverge. Finally, for stable equilibrium points, we

can 5) define the force multiplication due to improved intelligence, C
3

3
and counter-C3 .

It is clear that the model proposed here is capable of exhibiting

a great variety of behaviors, behaviors not unlike those found in actual

military conflicts. There are, however, clearly a great many issues that

need additional thought and in some cases justification. First, theie

remain some important mathematical problems. First among these is the

problem of locating the remaining equilibrium points and determining their

stability. (Recall that only one can presently be determined analytically).

There are several possible approaches to this problem including:

1.) Lyaponov Functions (Finding one for the model)

2.) Bifurcation Theory

3.) Continuation Methods (Numerical approach)

4.) A method of scaling similar to that used in Chap IV of this paper.
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The second major mathematical problem relates to the extraordinary

dependence of the eigenvalues of the Conflict Matrix, and hence system

stability, on the linear terms in the equations. This needs further

investigation and clarification. Put simply the quadratic terms are

essential to the determination of the several possible steady state

solutions, but the linear terms seem most important in determining their

stability or lack thereof, i.e. whether or not the system can stay at a

particular stationary point.

We also need to look at restructuring the model into a system of

discrete time difference equations. This approach is still amenaole to

analysis. But it will more easily allow modeling of time delays in the

supply of both forces and information and control. Numerical analysis is

essentially unchanged.

Finally, we need to begin investigating means to test the model and

to determine reasonable values for the parameters. Unless this can be

done eventually, little ultimate gain will come from these efforts although

we will certainly be able to gain some insights into the relative merits of

various means of counter-C3 . Since it was the counter-C3 problem that

initiated these efforts originally, we shall pursue that application first.
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Appendix A

The General Mathematical Theory

Systems

We have a system of N first order non-linear differential equations of

the form

S = F (S) + Q (A-1)

This class of equations are known as evolution equations. S and Q are

Nxl column vectors and there are N functional relationships, which we

shall take here to be at most quadratic. If we make each function of the

form
Fi(S) " Si[ NJ aij S] i~

(S) S l S

the system is a very generalized version of the Lotka-Volterra equations

for multi-species eco-systems. The system then, that we shall study is as

in (A-l), but we write somewhat more explicitly that

i ij s S. + QN , i = l,2...N (A-2)

Equilibrium Points

We are interested in the set of vectors, Se for which all the rates are

zero, i.e., for which S = 0. Since the system is non-linear, there will

be a number of these vectors, and the nonlinearity of the system makes

their determination, 'n general, exceedingly difficult. However, there

is a very ingenious way to determine one equilibrium vector from the

solution of a linear system of equations. We rewrite equations (A-2) as

follows:

Si - ij - (Xj S ie Si + Qi Sie (A-3)
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Though we don't know Sie' we know it is constant and that when

S =0, S=S e.

Evaluating (A-3) at S Se we find

N
S(ij + aij) Sje = , for i=l,2,..N (A-4)

or in matrix notation

Q = K Se  (A-5)

where the coefficient matrix is simply

ral a1 2  alN

21 21 22 " a2N

K +

Nl 1NN aN1 a3|2 . . . NN

Quadratic Prediation Linear Predation
(loss per capita per capita) (loss per capita)

K= a + A

Before passing to the issue of neighborhood stability, It is worth

remarking that frequently we may wish to establish equilibrium for some

specific value of Se  and find what the relationships among the coeffi-

cients must be in order to achieve this. A particularly useful point to

select is Se = . This makes all our species positive a most desirable

feature), and simplifies the mathematics, as we shall see. One caution;

because the equations are nonlinear, dynamical solutions will not simply

scale in accordance with scaling the equilibrium point, so care must be

taken in "over-generalizing" the results if the conflicting species are

greatly unbalanced.
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Unity Equilibrium

For Se = 1 we have

N
Qi = j_(j + aj )=l ,2,...N (A-6)

j :

and our unity equilibrium equations become

N N N
S S i S - ai Sj + Jla iJ + a..), i=1,2,...N (A-7)

j~l j~l

Note that Si 0 so that unity

S=l

is indeed an equilibrium point for the system of (A-7).

Neighborhood Stability

We can study the dynamic behavior of the system very close to S = Se

by a standard perturbation method. We proceed as follows:

Let S =S e + s (A-8)

where s is to be a small perturbation from Se

S = F(Se + s) + so that (A-9)

s= F(S e + s) + F(S e) + + C.s (A-10)

where the elements of the matrix C are

3 i I

-S = Se  (A-I)

Also note that F(S e ) + Q 0 (definition of an equilibrium point) soAls note

that we have the linear, first order homogeneous state equations

= C.s (A-12)
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The solution may be found by direct integration but Its properties

are most easily analyzed by transformation to the LaPlace domain.*

p S(p) - C S(p) = s(O) (A-13)

Here s(O1 are the initial conditions (displacement from equilibrium)

and p is the Laplacian operator. We are thus interested in matrix

equation

S(p) = (p I - C) " l s(O) (A-14)

Each term of the inverse, (p I-C) 1 , will contain the Det[pI - C]

in its denominator. This determinate will be an Nth order polynomial,

D(p), if the system has N species, and thus have N roots. In the

LaPlace domain then, every perturbation variable will be of the form

Ni(p) Ni(p)
Si(P) = - = (A-15)

where D(p) = (p-pl)(p-p2)...(p-pn) is the factored characteristic

equation. Assuming the roots are distinct, and none correspond to poles

of Ni(p), the time domain solution (.inverse LaPlace of (A-15))will have

the form
N

si(t) = Z rij ePj t  , t> 0 (A-16)
j-1

Therefore, when the roots {pj} have negative real parts, lie in the

left half of the complex plan (LHP), the perturbations die out with time

and the system is said to have neighborhood stability. If any of the

roots lie in the RHP, the system will be unstable, i.e. the smallest

perturbation from equilibrium will grow without bound (in the linearized,

or perturbation, system at least) and the equilibrium point is said to

have neighborhood in stability. If the roots are purely complex, the

Solution of (A-12) is a well established subject (See, e.g.
Truxal, J.G., Introductory Systems Engineering, McGraw-Hill, 1972.
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system will oscillate indefinitely and is said to be neutrally stable.

(The simplest form of the prey-predator equations are neutrally stable).

The roots of the characteristic polynomial

D(p) = Det I p I - C I are called the elgenvalues of the

matrix C. Therefore, we learn a great deal about the stability of our

system merely by studying the eigenvalues of the NXN matrix C. The

matrix C, in ecology, is called the "Connunity Matrix". In our work,

we shall refer to it as the "Conflict Matrix".

The Conflict Matrix

Recall that C has elements

3F.
cij as

that is, the coefficients of the first term of the Taylor series expansion

of Fi (S) about S e Now the off-diagonal terms are easily seen from

(A-3) to be

cij = - S aij - aj S Sie (a ij + aij) (A-17)

The diagonal terms are

N
= O- " a " a e

ii jl SSj ii ii Sie

N
c ii j 1 ijSje 'ii Sie" aii Sie

N

ce jl a ij S je (A-18)
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F
Thus, the conflict matrix becomes, for S = 1

aL I O12 CL  11 a 12 a " lN j

L2. I O2 2 . .. .. . .. t aij

( aNN aNl . ....... aNN -Nj _

or simply, at the unity equilibrium point,

where is a diagonal matrix whose elements are equal to the sums

of the row element of t , the quadratic predation matrix.
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